If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+3x-13=0
a = 11; b = 3; c = -13;
Δ = b2-4ac
Δ = 32-4·11·(-13)
Δ = 581
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{581}}{2*11}=\frac{-3-\sqrt{581}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{581}}{2*11}=\frac{-3+\sqrt{581}}{22} $
| 8(1)-8+3a(1)=5a(1)-2a | | -57=-7q+41 | | A(p)=-2.5p+26.5 | | 3x+11=2x-(-5) | | 6x+8=20+2x | | 15-2t=1.5t+9 | | 6p-4=62 | | 6g+10=88 | | 4*x-5=150 | | 3x+57/7+×+26/4=16 | | 9b/2-4=32 | | –4a=48 | | -23=-3+4v | | Y=20-0.75x | | 9x^2-27x+16=0 | | 2x-3=3+5x | | X-10+2x=-20-2x-25 | | 5x-8+7x+90=360 | | 8x-24=6x+15 | | u/5+28=34 | | 12=r4 | | -8n/4=-12 | | 9x-2+5x+9=85 | | 3y3+2y=7y2 | | 2(d-4)=5d-2 | | 5(-3x+1)=-130 | | -3.6+2h=-7 | | 272=131-v | | 7x-10=2x=-35 | | 154=-7(x-7) | | 0.8y-0.83=0.7 | | -8(p+5)+p=-89 |